PDF -> PDF

原文: 50 Shades of Go: Traps, Gotchas, and Common Mistakes for New Golang Devs 翻译: Go的50度灰:新Golang开发者要注意的陷阱、技巧和常见错误, 译者: 影风LEY blog

Go是一门简单有趣的语言,但与其他语言类似,它会有一些技巧。。。这些技巧的绝大部分并不是Go的缺陷造成的。如果你以前使用的是其他语言,那么这其中的有些错误就是很自然的陷阱。其它的是由错误的假设和缺少细节造成的。

如果你花时间学习这门语言,阅读官方说明、wiki、邮件列表讨论、大量的优秀博文和Rob Pike的展示,以及源代码,这些技巧中的绝大多数都是显而易见的。尽管不是每个人都是以这种方式开始学习的,但也没关系。如果你是Go语言新人,那么这里的信息将会节约你大量的调试代码的时间。

筛选了几条

初级

  1. 偶然的变量隐藏Accidental Variable Shadowing

短式变量声明的语法如此的方便(尤其对于那些使用过动态语言的开发者而言),很容易让人把它当成一个正常的分配操作。如果你在一个新的代码块中犯了这个错误,将不会出现编译错误,但你的应用将不会做你所期望的事情。

package main
import "fmt"
func main() {  
    x := 1
    fmt.Println(x)     //prints 1
    {
        fmt.Println(x) //prints 1
        x := 2
        fmt.Println(x) //prints 2
    }
    fmt.Println(x)     //prints 1 (bad if you need 2)
}

即使对于经验丰富的Go开发者而言,这也是一个非常常见的陷阱。这个坑很容易挖,但又很难发现。

你可以使用vet命令来发现一些这样的问题。 默认情况下, vet不会执行这样的检查,你需要设置-shadow参数: go tool vet -shadow your_file.go

  1. 不使用显式类型,无法使用“nil”来初始化变量

nil 标志符用于表示interface函数mapssliceschannels的“零值”。如果你不指定变量的类型,编译器将无法编译你的代码,因为它猜不出具体的类型。

package main
func main() {  
    var x = nil //error
    _ = x
}
  1. 使用“nil” Slices and Maps

在一个nil的slice中添加元素是没问题的,但对一个map做同样的事将会生成一个运行时的panic。

Works:

package main
func main() {  
    var s []int
    s = append(s,1)
}

Fails:

package main
func main() {  
    var m map[string]int
    m["one"] = 1 //error
}
  1. Map的容量

你可以在map创建时指定它的容量,但你无法在map上使用cap()函数。

package main
func main() {  
    m := make(map[string]int,99)
    cap(m) //error
}
  1. 字符串不会为nil

这对于经常使用nil分配字符串变量的开发者而言是个需要注意的地方。

package main
func main() {  
    var x string = nil //error
    if x == nil { //error -> right is ""
        x = "default"
    }
}
  1. Array函数的参数

如果你是一个C或则C++开发者,那么数组对你而言就是指针。当你向函数中传递数组时,函数会参照相同的内存区域,这样它们就可以修改原始的数据。Go中的数组是数值,因此当你向函数中传递数组时,函数会得到原始数组数据的一份复制。如果你打算更新数组的数据,这将会是个问题。

package main
import "fmt"
func main() {  
    x := [3]int{1,2,3}
    func(arr [3]int) {
        arr[0] = 7
        fmt.Println(arr) //prints [7 2 3]
    }(x)
    fmt.Println(x) //prints [1 2 3] (not ok if you need [7 2 3])
}

如果你需要更新原始数组的数据,你可以使用数组指针类型。

package main
import "fmt"
func main() {  
    x := [3]int{1,2,3}
    func(arr *[3]int) {
        (*arr)[0] = 7
        fmt.Println(arr) //prints &[7 2 3]
    }(&x)
    fmt.Println(x) //prints [7 2 3]
}

另一个选择是使用slice。即使你的函数得到了slice变量的一份拷贝,它依旧会参照原始的数据。

package main
import "fmt"
func main() {  
    x := []int{1,2,3}
    func(arr []int) {
        arr[0] = 7
        fmt.Println(arr) //prints [7 2 3]
    }(x)
    fmt.Println(x) //prints [7 2 3]
}
  1. 在Slice和Array使用“range”语句时的出现的不希望得到的值

如果你在其他的语言中使用“for-in”或者“foreach”语句时会发生这种情况。Go中的“range”语法不太一样。它会得到两个值:第一个值是元素的索引,而另一个值是元素的数据。

BAD:

package main
import "fmt"
func main() {  
    x := []string{"a","b","c"}
    for v := range x {
        fmt.Println(v) //prints 0, 1, 2
    }
}

Good:

package main
import "fmt"
func main() {  
    x := []string{"a","b","c"}
    for _, v := range x {
        fmt.Println(v) //prints a, b, c
    }
}
  1. Slices和Arrays是一维的

看起来Go好像支持多维的Array和Slice,但不是这样的。尽管可以创建数组的数组或者切片的切片。对于依赖于动态多维数组的数值计算应用而言,Go在性能和复杂度上还相距甚远。

你可以使用纯一维数组、“独立”切片的切片,“共享数据”切片的切片来构建动态的多维数组。

如果你使用纯一维的数组,你需要处理索引、边界检查、当数组需要变大时的内存重新分配。

使用“独立”slice来创建一个动态的多维数组需要两步。首先,你需要创建一个外部的slice。然后,你需要分配每个内部的slice。内部的slice相互之间独立。你可以增加减少它们,而不会影响其他内部的slice。

package main
func main() {  
    x := 2
    y := 4
    table := make([][]int,x)
    for i:= range table {
        table[i] = make([]int,y)
    }
}

使用“共享数据”slice的slice来创建一个动态的多维数组需要三步。首先,你需要创建一个用于存放原始数据的数据“容器”。然后,你再创建外部的slice。最后,通过重新切片原始数据slice来初始化各个内部的slice。

package main
import "fmt"
func main() {  
    h, w := 2, 4
    raw := make([]int,h*w)
    for i := range raw {
        raw[i] = i
    }
    fmt.Println(raw,&raw[4])
    //prints: [0 1 2 3 4 5 6 7] <ptr_addr_x>
    table := make([][]int,h)
    for i:= range table {
        table[i] = raw[i*w:i*w + w]
    }
    fmt.Println(table,&table[1][0])
    //prints: [[0 1 2 3] [4 5 6 7]] <ptr_addr_x>
}

关于多维array和slice已经有了专门申请,但现在看起来这是个低优先级的特性。

  1. 访问不存在的Map Keys

这对于那些希望得到“nil”标示符的开发者而言是个技巧(和其他语言中做的一样)。如果对应的数据类型的“零值”是“nil”,那返回的值将会是“nil”,但对于其他的数据类型是不一样的。检测对应的“零值”可以用于确定map中的记录是否存在,但这并不总是可信(比如,如果在二值的map中“零值”是false,这时你要怎么做)。检测给定map中的记录是否存在的最可信的方法是,通过map的访问操作,检查第二个返回的值。

bad:

package main
import "fmt"
func main() {  
    x := map[string]string{"one":"a","two":"","three":"c"}
    if v := x["two"]; v == "" { //incorrect
        fmt.Println("no entry")
    }
}

good:

package main
import "fmt"
func main() {  
    x := map[string]string{"one":"a","two":"","three":"c"}
    if _,ok := x["two"]; !ok {
        fmt.Println("no entry")
    }
}
  1. Strings无法修改

尝试使用索引操作来更新字符串变量中的单个字符将会失败。string是只读的byte slice(和一些额外的属性)。如果你确实需要更新一个字符串,那么使用byte slice,并在需要时把它转换为string类型。

Fails:

package main

import "fmt"

func main() {  
    x := "text"
    x[0] = 'T'
    fmt.Println(x)
}

main.go:7: cannot assign to x[0]

Works:

package main
import "fmt"
func main() {  
    x := "text"
    xbytes := []byte(x)
    xbytes[0] = 'T'
    fmt.Println(string(xbytes)) //prints Text
}

需要注意的是:这并不是在文字string中更新字符的正确方式,因为给定的字符可能会存储在多个byte中。如果你确实需要更新一个文字string,先把它转换为一个rune slice。即使使用rune slice,单个字符也可能会占据多个rune,比如当你的字符有特定的重音符号时就是这种情况。这种复杂又模糊的“字符”本质是Go字符串使用byte序列表示的原因。

  1. String和Byte Slice之间的转换

当你把一个字符串转换为一个byte slice(或者反之)时,你就得到了一个原始数据的完整拷贝。这和其他语言中cast操作不同,也和新的slice变量指向原始byte slice使用的相同数组时的重新slice操作不同。

Go在[]byte到string和string到[]byte的转换中确实使用了一些优化来避免额外的分配(在todo列表中有更多的优化)。

第一个优化避免了当[]byte keys用于在map[string]集合中查询时的额外分配:m[string(key)]。

第二个优化避免了字符串转换为[]byte后在for range语句中的额外分配:for i,v := range []byte(str) {…}。

  1. String和索引操作

字符串上的索引操作返回一个byte值,而不是一个字符(和其他语言中的做法一样)。

package main
import "fmt"
func main() {  
    x := "text"
    fmt.Println(x[0]) //print 116
    fmt.Printf("%T",x[0]) //prints uint8
}

如果你需要访问特定的字符串“字符”(unicode编码的points/runes),使用for range。官方的“unicode/utf8”包和实验中的utf8string包(golang.org/x/exp/utf8string)也可以用。utf8string包中包含了一个很方便的At()方法。把字符串转换为rune的切片也是一个选项。

  1. 字符串不总是UTF8文本

字符串的值不需要是UTF8的文本。它们可以包含任意的字节。只有在string literal使用时,字符串才会是UTF8。即使之后它们可以使用转义序列来包含其他的数据。

为了知道字符串是否是UTF8,你可以使用“unicode/utf8”包中的ValidString()函数。

package main
import (  
    "fmt"
    "unicode/utf8"
)
func main() {  
    data1 := "ABC"
    fmt.Println(utf8.ValidString(data1)) //prints: true
    data2 := "A\xfeC"
    fmt.Println(utf8.ValidString(data2)) //prints: false
}
  1. 字符串的长度

让我们假设你是Python开发者,你有下面这段代码:

data = u'♥'  
print(len(data)) #prints: 1
package main
import "fmt"
func main() {  
    data := "♥"
    fmt.Println(len(data)) //prints: 3
}

建的len()函数返回byte的数量,而不是像Python中计算好的unicode字符串中字符的数量。

要在Go中得到相同的结果,可以使用“unicode/utf8”包中的RuneCountInString()函数。

package main
import (  
    "fmt"
    "unicode/utf8"
)
func main() {  
    data := "♥"
    fmt.Println(utf8.RuneCountInString(data)) //prints: 1
}

理论上说RuneCountInString()函数并不返回字符的数量,因为单个字符可能占用多个rune。

package main
import (  
    "fmt"
    "unicode/utf8"
)
func main() {  
    data := "é"
    fmt.Println(len(data))                    //prints: 3
    fmt.Println(utf8.RuneCountInString(data)) //prints: 2
}
  1. log.Fatal和log.Panic不仅仅是Log

Logging库一般提供不同的log等级。与这些logging库不同,Go中log包在你调用它的Fatal()和Panic()函数时,可以做的不仅仅是log。当你的应用调用这些函数时,Go也将会终止应用 :-)

package main
import "log"
func main() {  
    log.Fatalln("Fatal Level: log entry") //app exits here
    log.Println("Normal Level: log entry")
}
  1. 内建的数据结构操作不是同步的

即使Go本身有很多特性来支持并发,并发安全的数据集合并不是其中之一 :-)确保数据集合以原子的方式更新是你的职责。Goroutines和channels是实现这些原子操作的推荐方式,但你也可以使用“sync”包,如果它对你的应用有意义的话。

  1. String在“range”语句中的迭代值

索引值(“range”操作返回的第一个值)是返回的第二个值的当前“字符”(unicode编码的point/rune)的第一个byte的索引。它不是当前“字符”的索引,这与其他语言不同。注意真实的字符可能会由多个rune表示。如果你需要处理字符,确保你使用了“norm”包(golang.org/x/text/unicode/norm)。

string变量的for range语句将会尝试把数据翻译为UTF8文本。对于它无法理解的任何byte序列,它将返回0xfffd runes(即unicode替换字符),而不是真实的数据。如果你任意(非UTF8文本)的数据保存在string变量中,确保把它们转换为byte slice,以得到所有保存的数据。

package main
import "fmt"
func main() {  
    data := "A\xfe\x02\xff\x04"
    for _,v := range data {
        fmt.Printf("%#x ",v)
    }
    //prints: 0x41 0xfffd 0x2 0xfffd 0x4 (not ok)
    fmt.Println()
    for _,v := range []byte(data) {
        fmt.Printf("%#x ",v)
    }
    //prints: 0x41 0xfe 0x2 0xff 0x4 (good)
}
  1. 对Map使用“for range”语句迭代

如果你希望以某个顺序(比如,按key值排序)的方式得到元素,就需要这个技巧。每次的map迭代将会生成不同的结果。Go的runtime有心尝试随机化迭代顺序,但并不总会成功,这样你可能得到一些相同的map迭代结果。所以如果连续看到5个相同的迭代结果,不要惊讶。

package main
import "fmt"
func main() {  
    m := map[string]int{"one":1,"two":2,"three":3,"four":4}
    for k,v := range m {
        fmt.Println(k,v)
    }
}
  1. “switch”声明中的失效行为

在“switch”声明语句中的“case”语句块在默认情况下会break。这和其他语言中的进入下一个“next”代码块的默认行为不同

package main
import "fmt"
func main() {  
    isSpace := func(ch byte) bool {
        switch(ch) {
        case ' ': //error
        case '\t':
            return true
        }
        return false
    }
    fmt.Println(isSpace('\t')) //prints true (ok)
    fmt.Println(isSpace(' '))  //prints false (not ok)
}

你可以通过在每个“case”块的结尾使用“fallthrough”,来强制“case”代码块进入。你也可以重写switch语句,来使用“case”块中的表达式列表。

package main
import "fmt"
func main() {  
    isSpace := func(ch byte) bool {
        switch(ch) {
        case ' ', '\t':
            return true
        }
        return false
    }
    fmt.Println(isSpace('\t')) //prints true (ok)
    fmt.Println(isSpace(' '))  //prints true (ok)
}
  1. 自增和自减

许多语言都有自增和自减操作。不像其他语言,Go不支持前置版本的操作。你也无法在表达式中使用这两个操作符。

package main
import "fmt"
func main() {  
    data := []int{1,2,3}
    i := 0
    ++i //error
    fmt.Println(data[i++]) //error
}

works:

package main
import "fmt"
func main() {  
    data := []int{1,2,3}
    i := 0
    i++
    fmt.Println(data[i])
}
  1. 按位NOT操作

许多语言使用 ~作为一元的NOT操作符(即按位补足),但Go为了这个重用了XOR操作符(^)。

package main
import "fmt"
func main() {  
    var d uint8 = 2
    fmt.Printf("%08b\n",^d)
}

Go依旧使用^作为XOR的操作符,这可能会让一些人迷惑。

如果你愿意,你可以使用一个二元的XOR操作(如, 0x02 XOR 0xff)来表示一个一元的NOT操作(如,NOT 0x02)。这可以解释为什么^被重用来表示一元的NOT操作。

Go也有特殊的‘AND NOT’按位操作(&^),这也让NOT操作更加的让人迷惑。这看起来需要特殊的特性/hack来支持 A AND (NOT B),而无需括号。

package main
import "fmt"
func main() {  
    var a uint8 = 0x82
    var b uint8 = 0x02
    fmt.Printf("%08b [A]\n",a)
    fmt.Printf("%08b [B]\n",b)
    fmt.Printf("%08b (NOT B)\n",^b)
    fmt.Printf("%08b ^ %08b = %08b [B XOR 0xff]\n",b,0xff,b ^ 0xff)
    fmt.Printf("%08b ^ %08b = %08b [A XOR B]\n",a,b,a ^ b)
    fmt.Printf("%08b & %08b = %08b [A AND B]\n",a,b,a & b)
    fmt.Printf("%08b &^%08b = %08b [A 'AND NOT' B]\n",a,b,a &^ b)
    fmt.Printf("%08b&(^%08b)= %08b [A AND (NOT B)]\n",a,b,a & (^b))
}
  1. 操作优先级的差异

除了”bit clear“操作(&^),Go也一个与许多其他语言共享的标准操作符的集合。尽管操作优先级并不总是一样。

package main
import "fmt"
func main() {  
    fmt.Printf("0x2 & 0x2 + 0x4 -> %#x\n",0x2 & 0x2 + 0x4)
    //prints: 0x2 & 0x2 + 0x4 -> 0x6
    //Go:    (0x2 & 0x2) + 0x4
    //C++:    0x2 & (0x2 + 0x4) -> 0x2
    fmt.Printf("0x2 + 0x2 << 0x1 -> %#x\n",0x2 + 0x2 << 0x1)
    //prints: 0x2 + 0x2 << 0x1 -> 0x6
    //Go:     0x2 + (0x2 << 0x1)
    //C++:   (0x2 + 0x2) << 0x1 -> 0x8
    fmt.Printf("0xf | 0x2 ^ 0x2 -> %#x\n",0xf | 0x2 ^ 0x2)
    //prints: 0xf | 0x2 ^ 0x2 -> 0xd
    //Go:    (0xf | 0x2) ^ 0x2
    //C++:    0xf | (0x2 ^ 0x2) -> 0xf
}
  1. 未导出的结构体不会被编码

以小写字母开头的结构体将不会被(json、xml、gob等)编码,因此当你编码这些未导出的结构体时,你将会得到零值

package main
import (  
    "fmt"
    "encoding/json"
)
type MyData struct {  
    One int
    two string
}
func main() {  
    in := MyData{1,"two"}
    fmt.Printf("%#v\n",in) //prints main.MyData{One:1, two:"two"}
    encoded,_ := json.Marshal(in)
    fmt.Println(string(encoded)) //prints {"One":1}
    var out MyData
    json.Unmarshal(encoded,&out)
    fmt.Printf("%#v\n",out) //prints main.MyData{One:1, two:""}
}
  1. 有活动的Goroutines下的应用退出

应用将不会等待所有的goroutines完成。这对于初学者而言是个很常见的错误。每个人都是以某个程度开始,因此如果犯了初学者的错误也没神马好丢脸的 :-)

package main
import (  
    "fmt"
    "time"
)
func main() {  
    workerCount := 2
    for i := 0; i < workerCount; i++ {
        go doit(i)
    }
    time.Sleep(1 * time.Second)
    fmt.Println("all done!")
}
func doit(workerId int) {  
    fmt.Printf("[%v] is running\n",workerId)
    time.Sleep(3 * time.Second)
    fmt.Printf("[%v] is done\n",workerId)
}

一个最常见的解决方法是使用“WaitGroup”变量。它将会让主goroutine等待所有的worker goroutine完成。如果你的应用有长时运行的消息处理循环的worker,你也将需要一个方法向这些goroutine发送信号,让它们退出。你可以给各个worker发送一个“kill”消息。另一个选项是关闭一个所有worker都接收的channel。这是一次向所有goroutine发送信号的简单方式。

package main
import (  
    "fmt"
    "sync"
)
func main() {  
    var wg sync.WaitGroup
    done := make(chan struct{})
    workerCount := 2
    for i := 0; i < workerCount; i++ {
        wg.Add(1)
        go doit(i,done,wg)
    }
    close(done)
    wg.Wait()
    fmt.Println("all done!")
}
func doit(workerId int,done <-chan struct{},wg sync.WaitGroup) {  
    fmt.Printf("[%v] is running\n",workerId)
    defer wg.Done()
    <- done
    fmt.Printf("[%v] is done\n",workerId)
}

fatal error: all goroutines are asleep - deadlock! 这可不太好 :-) 发送了神马?为什么会出现死锁?worker退出了,它们也执行了wg.Done()。应用应该没问题啊。

死锁发生是因为各个worker都得到了原始的“WaitGroup”变量的一个拷贝。当worker执行wg.Done()时,并没有在主goroutine上的“WaitGroup”变量上生效。

package main
import (  
    "fmt"
    "sync"
)
func main() {  
    var wg sync.WaitGroup
    done := make(chan struct{})
    wq := make(chan interface{})
    workerCount := 2
    for i := 0; i < workerCount; i++ {
        wg.Add(1)
        go doit(i,wq,done,&wg)
    }
    for i := 0; i < workerCount; i++ {
        wq <- i
    }
    close(done)
    wg.Wait()
    fmt.Println("all done!")
}
func doit(workerId int, wq <-chan interface{},done <-chan struct{},wg *sync.WaitGroup) {  
    fmt.Printf("[%v] is running\n",workerId)
    defer wg.Done()
    for {
        select {
        case m := <- wq:
            fmt.Printf("[%v] m => %v\n",workerId,m)
        case <- done:
            fmt.Printf("[%v] is done\n",workerId)
            return
        }
    }
}
  1. 向无缓存的Channel发送消息,只要目标接收者准备好就会立即返回

发送者将不会被阻塞,除非消息正在被接收者处理。根据你运行代码的机器的不同,接收者的goroutine可能会或者不会有足够的时间,在发送者继续执行前处理消息。

package main
import "fmt"
func main() {  
    ch := make(chan string)
    go func() {
        for m := range ch {
            fmt.Println("processed:",m)
        }
    }()
    ch <- "cmd.1"
    ch <- "cmd.2" //won't be processed
}
  1. 向已关闭的Channel发送会引起Panic

从一个关闭的channel接收是安全的。在接收状态下的ok的返回值将被设置为false,这意味着没有数据被接收。如果你从一个有缓存的channel接收,你将会首先得到缓存的数据,一旦它为空,返回的ok值将变为false。

向关闭的channel中发送数据会引起panic。这个行为有文档说明,但对于新的Go开发者的直觉不同,他们可能希望发送行为与接收行为很像。

package main
import (  
    "fmt"
    "time"
)
func main() {  
    ch := make(chan int)
    for i := 0; i < 3; i++ {
        go func(idx int) {
            ch <- (idx + 1) * 2
        }(i)
    }
    
    //get the first result
    fmt.Println(<-ch)
    close(ch) //not ok (you still have other senders)
    //do other work
    time.Sleep(2 * time.Second)
}

根据不同的应用,修复方法也将不同。可能是很小的代码修改,也可能需要修改应用的设计。无论是哪种方法,你都需要确保你的应用不会向关闭的channel中发送数据。

上面那个有bug的例子可以通过使用一个特殊的废弃的channel来向剩余的worker发送不再需要它们的结果的信号来修复。

package main
import (  
    "fmt"
    "time"
)
func main() {  
    ch := make(chan int)
    done := make(chan struct{})
    for i := 0; i < 3; i++ {
        go func(idx int) {
            select {
            case ch <- (idx + 1) * 2: fmt.Println(idx,"sent result")
            case <- done: fmt.Println(idx,"exiting")
            }
        }(i)
    }
    //get first result
    fmt.Println("result:",<-ch)
    close(done)
    //do other work
    time.Sleep(3 * time.Second)
}
  1. 使用”nil” Channels

在一个nil的channel上发送和接收操作会被永久阻塞。这个行为有详细的文档解释,但它对于新的Go开发者而言是个惊喜。

package main
import (  
    "fmt"
    "time"
)
func main() {  
    var ch chan int
    for i := 0; i < 3; i++ {
        go func(idx int) {
            ch <- (idx + 1) * 2
        }(i)
    }
    //get first result
    fmt.Println("result:",<-ch)
    //do other work
    time.Sleep(2 * time.Second)
}

如果运行代码你将会看到一个runtime错误:

fatal error: all goroutines are asleep - deadlock!

这个行为可以在select声明中用于动态开启和关闭case代码块的方法。

package main
import "fmt"  
import "time"
func main() {  
    inch := make(chan int)
    outch := make(chan int)
    go func() {
        var in <- chan int = inch
        var out chan <- int
        var val int
        for {
           select {
            case out <- val:
                out = nil
                in = inch
            case val = <- in:
                out = outch
                in = nil
            }
        }
    }()
    go func() {
        for r := range outch {
            fmt.Println("result:",r)
        }
    }()
    time.Sleep(0)
    inch <- 1
    inch <- 2
    time.Sleep(3 * time.Second)
}
  1. 传值方法的接收者无法修改原有的值

方法的接收者就像常规的函数参数。如果声明为值,那么你的函数/方法得到的是接收者参数的拷贝。这意味着对接收者所做的修改将不会影响原有的值,除非接收者是一个map或者slice变量,而你更新了集合中的元素,或者你更新的域的接收者是指针。

package main
import "fmt"
type data struct {  
    num int
    key *string
    items map[string]bool
}
func (this *data) pmethod() {  
    this.num = 7
}
func (this data) vmethod() {  
    this.num = 8
    *this.key = "v.key"
    this.items["vmethod"] = true
}
func main() {  
    key := "key.1"
    d := data{1,&key,make(map[string]bool)}
    fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)
    //prints num=1 key=key.1 items=map[]
    d.pmethod()
    fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items) 
    //prints num=7 key=key.1 items=map[]
    d.vmethod()
    fmt.Printf("num=%v key=%v items=%v\n",d.num,*d.key,d.items)
    //prints num=7 key=v.key items=map[vmethod:true]
}

中级

  1. 关闭HTTP的响应

当你使用标准http库发起请求时,你得到一个http的响应变量。如果你不读取响应主体,你依旧需要关闭它。注意对于空的响应你也一定要这么做。对于新的Go开发者而言,这个很容易就会忘掉。

一些新的Go开发者确实尝试关闭响应主体,但他们在错误的地方做。

package main
import (  
    "fmt"
    "net/http"
    "io/ioutil"
)
func main() {  
    resp, err := http.Get("https://api.ipify.org?format=json")
    defer resp.Body.Close()//not ok
    if err != nil {
        fmt.Println(err)
        return
    }
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(string(body))
}

这段代码对于成功的请求没问题,但如果http的请求失败,resp变量可能会是nil,这将导致一个runtime panic。

最常见的关闭响应主体的方法是在http响应的错误检查后调用defer。

package main
import (  
    "fmt"
    "net/http"
    "io/ioutil"
)
func main() {  
    resp, err := http.Get("https://api.ipify.org?format=json")
    if err != nil {
        fmt.Println(err)
        return
    }
    defer resp.Body.Close()//ok, most of the time :-)
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(string(body))
}

大多数情况下,当你的http响应失败时,resp变量将为nil,而err变量将是non-nil。然而,当你得到一个重定向的错误时,两个变量都将是non-nil。这意味着你最后依然会内存泄露。

通过在http响应错误处理中添加一个关闭non-nil响应主体的的调用来修复这个问题。另一个方法是使用一个defer调用来关闭所有失败和成功的请求的响应主体。

package main
import (  
    "fmt"
    "net/http"
    "io/ioutil"
)
func main() {  
    resp, err := http.Get("https://api.ipify.org?format=json")
    if resp != nil {
        defer resp.Body.Close()
    }
    if err != nil {
        fmt.Println(err)
        return
    }
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(string(body))
}

resp.Body.Close()的原始实现也会读取并丢弃剩余的响应主体数据。这确保了http的链接在keepalive http连接行为开启的情况下,可以被另一个请求复用。最新的http客户端的行为是不同的。现在读取并丢弃剩余的响应数据是你的职责。如果你不这么做,http的连接可能会关闭,而无法被重用。这个小技巧应该会写在Go 1.5的文档中。

如果http连接的重用对你的应用很重要,你可能需要在响应处理逻辑的后面添加像下面的代码:

_, err = io.Copy(ioutil.Discard, resp.Body)

如果你不立即读取整个响应将是必要的,这可能在你处理json API响应时会发生:

json.NewDecoder(resp.Body).Decode(&data)

  1. 关闭HTTP的连接

一些HTTP服务器保持会保持一段时间的网络连接(根据HTTP 1.1的说明和服务器端的“keep-alive”配置)。默认情况下,标准http库只在目标HTTP服务器要求关闭时才会关闭网络连接。这意味着你的应用在某些条件下消耗完sockets/file的描述符。

你可以通过设置请求变量中的Close域的值为true,来让http库在请求完成时关闭连接。

另一个选项是添加一个Connection的请求头,并设置为close。目标HTTP服务器应该也会响应一个Connection: close的头。当http库看到这个响应头时,它也将会关闭连接。

package main
import (  
    "fmt"
    "net/http"
    "io/ioutil"
)
func main() {  
    req, err := http.NewRequest("GET","http://golang.org",nil)
    if err != nil {
        fmt.Println(err)
        return
    }
    req.Close = true
    //or do this:
    //req.Header.Add("Connection", "close")
    resp, err := http.DefaultClient.Do(req)
    if resp != nil {
        defer resp.Body.Close()
    }
    if err != nil {
        fmt.Println(err)
        return
    }
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(len(string(body)))
}

你也可以取消http的全局连接复用。你将需要为此创建一个自定义的http传输配置。

package main
import (  
    "fmt"
    "net/http"
    "io/ioutil"
)
func main() {  
    tr := &http.Transport{DisableKeepAlives: true}
    client := &http.Client{Transport: tr}
    resp, err := client.Get("http://golang.org")
    if resp != nil {
        defer resp.Body.Close()
    }
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(resp.StatusCode)
    body, err := ioutil.ReadAll(resp.Body)
    if err != nil {
        fmt.Println(err)
        return
    }
    fmt.Println(len(string(body)))
}

如果你向同一个HTTP服务器发送大量的请求,那么把保持网络连接的打开是没问题的。然而,如果你的应用在短时间内向大量不同的HTTP服务器发送一两个请求,那么在引用收到响应后立刻关闭网络连接是一个好主意。增加打开文件的限制数可能也是个好主意。当然,正确的选择源自于应用。

  1. 比较Structs, Arrays, Slices, and Maps

如果结构体中的各个元素都可以用你可以使用等号来比较的话,那就可以使用相号, ==,来比较结构体变量。

package main
import "fmt"
type data struct {  
    num int
    fp float32
    complex complex64
    str string
    char rune
    yes bool
    events <-chan string
    handler interface{}
    ref *byte
    raw [10]byte
}
func main() {  
    v1 := data{}
    v2 := data{}
    fmt.Println("v1 == v2:",v1 == v2) //prints: v1 == v2: true
}

如果结构体中的元素无法比较,那使用等号将导致编译错误。注意数组仅在它们的数据元素可比较的情况下才可以比较。

package main
import "fmt"
type data struct {  
    num int                //ok
    checks [10]func() bool //not comparable
    doit func() bool       //not comparable
    m map[string] string   //not comparable
    bytes []byte           //not comparable
}
func main() {  
    v1 := data{}
    v2 := data{}
    fmt.Println("v1 == v2:",v1 == v2)
}

最常用的方法是使用reflect包中的DeepEqual()函数。

package main
import (  
    "fmt"
    "reflect"
)
type data struct {  
    num int                //ok
    checks [10]func() bool //not comparable
    doit func() bool       //not comparable
    m map[string] string   //not comparable
    bytes []byte           //not comparable
}
func main() {  
    v1 := data{}
    v2 := data{}
    fmt.Println("v1 == v2:",reflect.DeepEqual(v1,v2)) //prints: v1 == v2: true
    m1 := map[string]string{"one": "a","two": "b"}
    m2 := map[string]string{"two": "b", "one": "a"}
    fmt.Println("m1 == m2:",reflect.DeepEqual(m1, m2)) //prints: m1 == m2: true
    s1 := []int{1, 2, 3}
    s2 := []int{1, 2, 3}
    fmt.Println("s1 == s2:",reflect.DeepEqual(s1, s2)) //prints: s1 == s2: true
}

除了很慢(这个可能会也可能不会影响你的应用),DeepEqual()也有其他自身的技巧。

package main
import (  
    "fmt"
    "reflect"
)
func main() {  
    var b1 []byte = nil
    b2 := []byte{}
    fmt.Println("b1 == b2:",reflect.DeepEqual(b1, b2)) //prints: b1 == b2: false
}

DeepEqual()不会认为空的slice与“nil”的slice相等。这个行为与你使用bytes.Equal()函数的行为不同。bytes.Equal()认为“nil”和空的slice是相等的。

package main
import (  
    "fmt"
    "bytes"
)
func main() {  
    var b1 []byte = nil
    b2 := []byte{}
    fmt.Println("b1 == b2:",bytes.Equal(b1, b2)) //prints: b1 == b2: true
}

DeepEqual()在比较slice时并不总是完美的。

package main
import (  
    "fmt"
    "reflect"
    "encoding/json"
)
func main() {  
    var str string = "one"
    var in interface{} = "one"
    fmt.Println("str == in:",str == in,reflect.DeepEqual(str, in)) 
    //prints: str == in: true true
    v1 := []string{"one","two"}
    v2 := []interface{}{"one","two"}
    fmt.Println("v1 == v2:",reflect.DeepEqual(v1, v2)) 
    //prints: v1 == v2: false (not ok)
    data := map[string]interface{}{
        "code": 200,
        "value": []string{"one","two"},
    }
    encoded, _ := json.Marshal(data)
    var decoded map[string]interface{}
    json.Unmarshal(encoded, &decoded)
    fmt.Println("data == decoded:",reflect.DeepEqual(data, decoded)) 
    //prints: data == decoded: false (not ok)
}

如果你的byte slice(或者字符串)中包含文字数据,而当你要不区分大小写形式的值时(在使用==,bytes.Equal(),或者bytes.Compare()),你可能会尝试使用“bytes”和“string”包中的ToUpper()或者ToLower()函数。对于英语文本,这么做是没问题的,但对于许多其他的语言来说就不行了。这时应该使用strings.EqualFold()和bytes.EqualFold()。

如果你的byte slice中包含需要验证用户数据的隐私信息(比如,加密哈希、tokens等),不要使用reflect.DeepEqual()、bytes.Equal(),或者bytes.Compare(),因为这些函数将会让你的应用易于被定时攻击。为了避免泄露时间信息,使用’crypto/subtle’包中的函数(即,subtle.ConstantTimeCompare())。

  1. 从Panic中恢复

recover()函数可以用于获取/拦截panic。仅当在一个defer函数中被完成时,调用recover()将会完成这个小技巧。

Incorrect:

package main
import "fmt"
func main() {  
    recover() //doesn't do anything
    panic("not good")
    recover() //won't be executed :)
    fmt.Println("ok")
}

Works:

package main
import "fmt"
func main() {  
    defer func() {
        fmt.Println("recovered:",recover())
    }()
    panic("not good")
}

recover()的调用仅当它在defer函数中被直接调用时才有效。

Fails:

package main
import "fmt"
func doRecover() {  
    fmt.Println("recovered =>",recover()) //prints: recovered => <nil>
}
func main() {  
    defer func() {
        doRecover() //panic is not recovered
    }()
    panic("not good")
}